In pursuit of even more flavorful, healthy cooking, chefs the world over are turning their attention to umami. Once there were thought to be four basic—or primary—tastes: sweet, sour, salty and bitter. Until that is, Japanese scientist Dr. Kikunae Ikeda noted the presence of another savory taste unexplainable solely by these four. In 1908 Ikeda attributed this fifth taste to the amino acid glutamate found in large quantities in kombu seaweed, and dubbed it “umami.” Then in 1913 Shintaro Kodama found inosinate to be the umami component in dried bonito flakes (katsuobushi), and in 1957, Dr. Akira Kuninaka discovered umami in guanylate, later identifying guanylate as the umami component in dried shiitake mushrooms.

Glutamate, inosinate and guanylate are the three dominant umami substances, and are found not only in kombu and katsuobushi, but other foods as well. Glutamate is a component of vegetables such as tomatoes, and of fermented foods such as cheese, miso or soy sauce. Inosinate is found in meat and fish, and guanylate in dried mushrooms. Umami substances, though discovered by Japanese scientists, are present in a wide variety of foods found all over the world. It may have been the straightforward umami of Japanese cuisine, unmasked by complex flavors or aromas, that led to umami’s discovery in Japan first.

In 1982, researchers in fields encompassing the physiology of taste, physiology of the oral cavity, nutritional science, and food chemistry established a study group to promote research on umami. International symposiums on the topic of umami were held in Japan and elsewhere, facilitating the exchange of scientific information on umami, including the work of overseas researchers. As a result, umami was internationally recognized as the fifth taste, joining the existing four basic tastes, and in 2002, the presence of umami receptors in the taste buds on the tongue was revealed: further scientific proof cementing umami’s status as a primary taste.

In December 2013 “Washoku, traditional dietary cultures of the Japanese” was accorded Intangible Cultural Heritage status by UNESCO. Japanese cuisine is currently enjoying a burgeoning international profile thanks to the growing awareness of healthy eating choices. One characteristic of Japanese food is the skillful use of umami to create tasty, healthy dishes without animal fats. Umami—a Japanese word now internationally recognized—is a key element in palatability or “deliciousness,” and a focus of intense interest among people involved in food, from taste researchers to nutritionists, food journalists and chefs the world over. It is also now receiving extensive exposure in the non-Japanese media, and on the internet.

The Umami Information Center is engaged in a range of promotional and educational activities designed to further understanding of umami. These include organizing lectures and symposiums both in Japan and elsewhere, running websites (Japanese: www.umamiinfo.jp, English: www.umamiinfo.com), and publishing books and leaflets. We hope this leaflet will help you to learn more about umami.

March 2015
Takashi Yamamoto
Chairman
Umami Information Center
D.M.D.

CONTENTS
Umami: critical to delicious cooking  ·  3
   Umami and “deliciousness”  ·  4
The basic tastes and common corresponding foods/components  ·  5
Umami and babies  ·  6
   Where do we sense umami?  ·  6
   A signal for protein
   The role of glutamate
The discovery of umami  ·  7
   Umami and the history of seasonings
   A Japanese discovery
What umami tastes like: three properties  ·  8
   Experiencing umami for yourself
Where can we find umami?  ·  10
Umami and aging/fermentation  ·  11
Traditional foods around the world and umami  ·  12
Umami Q&A  ·  14
Umami synergy  ·  16
Comparing soups the world over  ·  17
The growing use of umami  ·  18
   Healthy Japanese cuisine in the global spotlight
   Umami allows for less salt
   Improving quality of life for the elderly
Chefs and researchers give their views on umami  ·  20
Chefs the world over use umami  ·  22
About the Umami Information Center  ·  23

Heston Blumenthal’s photo by Alisa Connan: p.20
Umami: critical to delicious cooking

It has been over a century since umami was discovered in Japan, but umami is just now attracting global attention, primarily from chefs and others with a strong interest in food.

Umami is the fifth taste, joining sweet, sour, salty and bitter. These are unique tastes that cannot be created by mixing other tastes, and are known as the basic, or primary tastes. Umami is a general term used mainly for substances combining the amino acid glutamate, and/or the nucleotides inosinate and guanylate, with minerals such as sodium and potassium.*

Umami and “deliciousness”
Since the word “umami” is originally Japanese and the Japanese expressions “to have umami” and “umai” can mean “tastiness” or “deliciousness,” “umami” is often confused with “deliciousness.” Whether something tastes good or not is a comprehensive yet subjective evaluation determined by elements such as taste, aroma, texture and temperature, besides other factors such as appearance, color and shape, as well as one’s physical condition, surrounding environment, cultural background, and previous experiences. Of these various elements, umami in balance with the other basic tastes (sweet, sour, salty, and bitter) plays an important role in determining the deliciousness of a dish.

How humans experience their food

* In scientific terms, umami is defined as the taste of salts combining glutamate, inosinate or guanylate with the likes of sodium ions, such as monosodium glutamate, or potassium ions, but for the purposes of this pamphlet, except for sections requiring scientific precision, we describe umami as the taste of glutamate, inosinate and guanylate.

Salts of the amino acid aspartate and the nucleotide adenylate are also types of umami substance, weaker than glutamate. Succinic acid, which gives shellfish their distinctive taste, has also been identified as another possible umami substance.
For human beings, being able to distinguish the five basic tastes is an indispensable survival skill, because it allows us to avoid risky foods and obtain nutrients safely.

By detecting the sour taste of organic acids in unripe fruit or rotting food, or the bitterness of alkaloids, for example, our tongue enables us to avoid danger. In contrast, when we detect the sweetness of sugars that serve as our energy source, or the saltiness of minerals necessary to maintain the balance of body fluids, we actively consume them.

Umami meanwhile serves as a signal to the body that we have consumed protein. Sensing umami triggers the secretion of saliva and digestive juices, facilitating the smooth digestion of protein.

<table>
<thead>
<tr>
<th>Taste</th>
<th>Taste substance</th>
<th>Common foods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweet</td>
<td>Sucrose, Fructose, Glucose</td>
<td>Sugar, Honey, Candy</td>
</tr>
<tr>
<td>Sour</td>
<td>Acetic acid, Citric acid, Lactic acid</td>
<td>Vinegar, Lemons, Limes, Yogurt</td>
</tr>
<tr>
<td>Salty</td>
<td>Sodium chloride</td>
<td>Salt</td>
</tr>
<tr>
<td>Bitter</td>
<td>Caffeine, Alkaloids, Momordicin</td>
<td>Coffee, Bitter melon, Chocolate (90% cacao mass)</td>
</tr>
<tr>
<td>Umami</td>
<td>Glutamate, Inosinate, Guanylate</td>
<td>Tomatoes, Cheese, Meat, Fish, Dried shiitake mushrooms</td>
</tr>
</tbody>
</table>
Umami and babies

Umami is an important taste for newborn babies. Breast milk is rich in the umami component glutamate. It is also contained in amniotic fluid, making umami a familiar taste even before birth.

For babies too, the basic tastes are a vital signal that tells them whether what they have consumed is nutritious or harmful. When sour and bitter solutions were placed in the mouths of six-month-old infants transitioning to solid food, their facial responses indicated rejection of the tastes. On the other hand, when offered a sweet liquid, they appeared calm and happy.

When then given vegetable soup, the infants screwed up their faces slightly, but when given vegetable soup with umami added, they exhibited the same degree of satisfaction as when given the sweet liquid.

**Amino acids in mother’s milk 7 days after birth**

*This experiment was conducted under expert supervision and in accordance with the method of Dr. J. E. Steiner. Because infants are less sensitive to saltiness than adults, and out of concern for any possible health effects, no experiments were undertaken with salty tastes.*

* (J. E. Steiner et al., 1987)
Umami and our bodies

Where do we sense umami?

dotted over the tongue are patches of tissue called papillae, which contain bud-shaped organs that detect taste. These taste buds, as they are commonly known, consist of dozens of taste cells clumped together. The taste cells in turn contain receptors for sweet, sour, salty, bitter and umami substances. From these receptors, information is transmitted to the brain, and we perceive the taste of the food.

Umami substances function as the keys and their receptors as the keyholes. When the receptors in taste cells receive the umami substance glutamate, that information is swiftly passed on to the brain via taste nerves, and umami is recognized.

A signal for protein

each of the basic tastes acts as a signal for nutrients or harmful substances. Umami is the taste of amino acids and nucleotides, and tells us when a food contains protein, a nutrient essential to survival.

The role of glutamate

recent studies have revealed the presence of umami receptors not only on the tongue, but also in the stomach. When food enters the stomach, and receptors in the stomach detect an umami substance (glutamate), the umami information is conveyed to the brain via the vagus nerve. The brain in turn transmits a message to the stomach that triggers the digestion and absorption of protein. Thus umami is closely involved in protein digestion and absorption, giving it a vital role in our bodies. No doubt the future will bring further discoveries about glutamate’s role in digestion and absorption.

Intake of Umami-Rich Food
The discovery of umami

Umami and the history of seasonings
Through history, human beings have created various seasonings and condiments to improve the palatability of food. Salt has been a familiar flavor-enhancer for thousands of years. Foods such as sugar and vinegar have also been known since ancient times. This is why we can all readily imagine sweet, sour and salty tastes.

Umami too is contained in a variety of foodstuffs, and is familiar to us from the taste of traditional foods such as soy sauce, miso and cheese. However, it is only around a century ago that umami was discovered as a basic taste, and monosodium glutamate invented and launched as an umami seasoning.

A Japanese discovery
There were long thought to be just four basic tastes: sweet, sour, salty and bitter. Then a scientist in Japan—Professor Kikunae Ikeda of Tokyo Imperial University (now the University of Tokyo)—noticed the presence of a taste that did not fit into any of these categories. Professor Ikeda discovered the main taste component in kombu dashi (broth or stock) to be glutamate, and dubbing it “umami,” penned an academic paper explaining the existence of umami as one of the basic tastes.

Following in Professor Ikeda’s footsteps, other Japanese scientists discovered the umami substances inosinate and guanylate.

1908  Professor Kikunae Ikeda identifies the “fifth taste” component as glutamate, an amino acid found in large quantities in kombu seaweed, and dubs this taste “umami.”
1913  Shintaro Kodama, Professor Ikeda’s leading disciple, identifies the nucleotide inosinate as the umami component of katsuobushi (dried bonito flakes).
1957  Dr. Akira Kuninaka of the Yamasa Shoyu Research Laboratories identifies the nucleotide guanylate as an umami component, and later confirms it to be the umami component in dried shiitake mushrooms.
What umami tastes like: three properties

A delicate taste. A mild, subtle taste. A taste that spreads across the tongue, coating it completely. A persistent, lingering taste. A mouthwatering sensation. This is how chefs who have experienced and recognized umami describe its characteristics.

Let us take a look at three properties of umami.

**Spreading across the tongue**

Umami is frequently described as a taste that “spreads across the tongue, coating it.” Experiments on the tongue's areas of taste receptivity have shown that sweet and salty tastes are sensed more intensely on the tip of the tongue, while umami is sensed all across it.

**Persistence**

One study had participants separately take solutions of the umami substances glutamate and inosinate, table salt, and tartaric acid (the acid component of wine) into their mouths, then spit the solutions out and compare the intensity of taste left in their mouth. While the salty and sour tastes of table salt and tartaric acid soon faded, umami was found to linger for several minutes. This suggests that even among the basic tastes, umami has a major impact on the aftertaste of foods.

**Promotes salivation**

Sour or acid taste is widely known to promote salivation, but in fact it has been revealed that umami triggers the sustained secretion of saliva for a longer period.

Furthermore, the saliva produced with sour tastes has a lighter quality, whereas the saliva produced with umami is more viscous, and this seems to moisten more the inside of the mouth.

Without saliva we are unable to sense taste or swallow food smoothly. Umami holds the key to these functions.
**Experiencing umami for yourself**

Tomatoes are rich in the umami substance glutamate. Here they are used in a simple method for tasting umami.

1. Remove the stalk from a cherry tomato and place the tomato in your mouth.
2. Chew about 30 times without swallowing, and try to slowly sense the change in taste on your tongue.
3. After chewing 30 or so times, see if you can feel the taste that lingers in your mouth long after the tartness, sweetness and distinctive tomato flavor have dissipated. This taste is umami. You will probably also notice that your mouth waters continuously as you chew, since umami promotes salivation.

*Various other methods of experiencing umami can be found on the Umami Information Center website at www.umamiinfo.com/2013/02/tasting-umami.php.*
Where can we find umami?

The main components of umami are glutamate, inosinate and guanylate. Glutamate is found in a variety of foods including meat, fish and vegetables. Inosinate is found in generous quantities in animal-based foods such as meat and fish, while large amounts of guanylate can be found in dried mushroom products such as dried shiitake.

We also know that the umami component of food increases as a result of processing such as ripening and fermentation. Many traditional foodstuffs from around the world, such as soy sauce and other fermented condiments made from grain, fish sauces such as Thailand’s nam pla and nuoc mam from Vietnam, and cheeses are excellent sources of umami.

Umami-rich foods

<table>
<thead>
<tr>
<th>Glutamate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomatoes</td>
</tr>
<tr>
<td>Onions</td>
</tr>
<tr>
<td>Kombu seaweed</td>
</tr>
<tr>
<td>Asparagus</td>
</tr>
<tr>
<td>White asparagus</td>
</tr>
<tr>
<td>Broccoli</td>
</tr>
<tr>
<td>Peas</td>
</tr>
<tr>
<td>Cheese</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inosinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sardines</td>
</tr>
<tr>
<td>Bonito</td>
</tr>
<tr>
<td>Dried bonito (Katsuobushi)</td>
</tr>
<tr>
<td>Poultry</td>
</tr>
<tr>
<td>Pork</td>
</tr>
<tr>
<td>Beef</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guanylate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dried porcini</td>
</tr>
<tr>
<td>Dried shiitake</td>
</tr>
<tr>
<td>Dried morels</td>
</tr>
</tbody>
</table>
Meat generally undergoes a certain period of aging prior to being sent to the market. The main component of meat is protein, which is made up of a long chain of 20 amino acids. Glutamate constitutes the largest proportion of these amino acids, around 15 percent.

Protein itself has no taste. Taste is only perceived when protein breaks down and the amino acid chain disintegrates. These scattered amino acids are known as free amino acids, and are usually referred in this pamphlet as amino acids. This is why instead of “free glutamate,” we simply use “glutamate.”

As well as the likes of free glutamate and free aspartate containing umami, free amino acids can impart a sweet taste (from glycine or alanine) and bitterness (from leucine or valine).

The flavor peculiar to meat emerges when the protein in the meat breaks down during the aging process, and the umami-carrying free glutamate increases.

A similar phenomenon occurs in foods such as cheese, cured ham, miso and soy sauce. In the case of cured ham a leg of pork is salted, allowed to develop mold, dried and carefully aged. During this process the volume of glutamate is boosted by around a factor of fifty. In cheese, the longer the aging process, the higher the glutamate.
Traditional foods around the world and umami

Many different traditional seasonings and foodstuffs can be found around the world. Most have been processed in some way to preserve them, either by fermentation, drying or salting. These processes boost umami substances such as glutamate, creating food rich in umami.

Here is a selection of umami foods that continue to be regional favorites.

- **Foods made by fermenting legumes or cereals**
  - Used in paste or liquid form

- **Foods made by fermenting seafood**
  - Used in paste or liquid form

- **Other foods**

- **Regions where tomatoes are used as a staple in cooking**
What is that white powder on the surface of kombu?

Dried kombu may be covered in a fine white powder. Though occasionally mistaken for glutamate, this powder is in fact a type of mildly sweet sugar known as mannitol, another taste element of kombu.

What are the white crystals visible on long-ripened cheeses such as Parmigiano reggiano?

As cheese ages its amino acid content rises and water content declines. These white crystals are mainly clumps of amino acids not readily soluble in water, such as leucine, isoleucine, and valine. Glutamate is only found in very small amounts inside the white crystals.

Is inosinate the umami component in cured ham?

The umami in cured ham is not inosinate, but glutamate. Although, like katsuobushi (dried bonito flakes), ham is an animal product, it contains almost no inosinate. Inosinate is produced when ATP (adenosine triphosphate), the energy source in animal muscles, is broken down posthumously by enzyme action. If this disintegration becomes too advanced, inosinate will turn into another, different substance, from which umami is absent. This means that inosinate content first rises after death, then falls.

Raw pork is rich in inosinate, but cured ham is pork that has been salted then aged over a long period of one to two years. During that time the inosinate content declines, reaching almost zero by the time the ham is ready for consumption. Meanwhile, glutamate increases during aging, and is concentrated by the drying process. This compensates for the drop in inosinate and makes cured ham a food with umami to spare.
Q Is the umami component of foods like katsuobushi and niboshi (dried anchovies) inosinate?

A Inosinate does indeed account for most of the umami in foods such as katsuobushi and niboshi.

The process used to manufacture katsuobushi and niboshi differs from the usual processing of dried fish, in that the fish is heated to almost 100°C. This heating deactivates the enzyme that breaks down inosinate into a different non-umami substance, thus preserving the inosinate content.

Katsuobushi and niboshi are also rich in glutamate.

Q Is guanylate the umami component in fresh mushrooms?

A Fresh mushrooms contain almost no guanylate.

Guanylate is a nucleotide, one of the components of RNA (ribonucleic acid). In fresh mushrooms, a pre-guanylate substance is preserved within the cells. When fresh mushrooms are dried or frozen, for example, the cell wall disintegrates, and enzyme action converts that substance into guanylate.

Fresh mushrooms do contain a lot of glutamate.

Q What is the difference between the glutamate in seasonings/condiments and glutamate found in the likes of tomatoes and kombu?

A The glutamate in foods such as tomatoes and kombu is the same substance as the glutamate in seasonings and condiments.

Most foods contain minerals such as sodium, potassium and magnesium. This means that the glutamate in tomatoes and kombu, like the glutamate used as a seasoning, is actually present as a glutamic acid salt such as monosodium glutamate or potassium glutamate.

Glutamate in foods and the process by which we sense umami

- Glutamic acid (sour taste)
- Sodium
- Potassium
- Magnesium
- Monosodium glutamate
- Potassium glutamate
- Magnesium glutamate

Taste nerves transmit information to brain

Umami
The main umami substances are glutamate, inosinate and guanylate, and it has been scientifically proven that umami is sensed far more strongly when these are present not individually, but when glutamate is combined with inosinate or guanylate. This is referred to as umami synergy.

Yet people have been capitalizing on umami synergy for centuries, long before this effect was scientifically proven. All over the world, in dishes from soups combining glutamate-rich vegetables and inosinate-rich meat and fish, to the tang of Chinese cuisine extracted from chicken or pork bones and green onions, to Japanese dashi made from kombu (high in glutamate) and katsuobushi (high in inosinate), people have acquired an empirical understanding of umami synergy and applied that knowledge to cooking.

The strength of the umami synergy between glutamate and inosinate varies according to the ratios of each. When solutions containing slightly varying proportions of glutamate and inosinate were used to perform a sensory evaluation, umami was found to be most powerful with a glutamate to inosinate ratio of exactly 1:1. This proportion was deemed 7 to 8 times the intensity of tasting either glutamate or inosinate in isolation.

An analysis of the ichiban (primary) dashi used at one venerable Japanese restaurant revealed the glutamate/inosinate ratio to be exactly 1:1, suggesting that top restaurants know from experience the optimal proportions for greatest umami.

### Synergistic effect in various cooking

<table>
<thead>
<tr>
<th>Glutamate</th>
<th>Inosinate</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Japanese</strong></td>
<td></td>
</tr>
<tr>
<td>Kombu seaweed</td>
<td>Dried bonito</td>
</tr>
<tr>
<td>Onion, Carrot, Celery</td>
<td>Beef</td>
</tr>
<tr>
<td>Spring onion, Ginger</td>
<td>Chicken</td>
</tr>
</tbody>
</table>

### Umami intensity by Glutamate/Inosinate ratio

*Proportions of glutamate and inosinate were adjusted to maintain a fixed total concentration (0.05g/100ml) of umami substance.*
The dashi of Japan, bouillon from France, Chinese tang—ingredients and uses may differ, but all are indispensable to their respective cuisines. Analysis of their content reveals all to be rich in the umami substances glutamate and inosinate, and all are striking in their intense taste. Both east and west make clever use of umami.

Japanese dashi is simple, composed mainly of glutamate, inosinate, and the weaker umami substance aspartate. In contrast, bouillon and tang have high levels of amino acids that are not umami substances, and consequently have more complex tastes.

**Comparing soups the world over**

Japanese dashi is simple, composed mainly of glutamate, inosinate, and the weaker umami substance aspartate. In contrast, bouillon and tang have high levels of amino acids that are not umami substances, and consequently have more complex tastes.

*Kombu dashi*  
Ichiban dashi*  
Chicken bouillon  
Shang tang

*Ichiban dashi is high in a weak sour amino acid by the name of histidine, found in katsuobushi.*

Analysis courtesy of: AJINOMOTO Co., Inc.
The growing use of umami

The functions of umami are attracting growing interest not only in the world of cooking, but from medical and nutrition professionals as well.

Healthy Japanese cuisine in the global spotlight
Recent years have seen a growing shift in the developed world toward fewer calories and animal fats, as people look to prevent lifestyle diseases and maintain good health. As part of this dietary trend, Japanese cuisine has enjoyed burgeoning popularity, thanks to its health properties.

Rather than relying on animal fats, Japanese cooking uses the umami of dashi to highlight the intrinsic flavors of ingredients, and chefs from all over the world have started visiting Japan to study these cooking techniques. Learning how to make Japanese dashi, they master the use of umami as an alternative to animal fats before going on to develop their own approaches to umami-oriented cooking.

For instance, a kaiseki-style bento box made by one traditional Japanese restaurant uses over 40 different ingredients, yet contains fewer than 500 calories. The secret is the Japanese cooking technique of using the umami of dashi to enhance flavors.

Umami allows for less salt
Umami also helps to reduce salt content in cooking. Numerous studies and statistics link excessive salt intake to many different lifestyle diseases. Yet food does require a certain amount of salt to taste good. Drastically reducing salt content renders food tasteless, and while we know that cutting down on salt is good for our bodies, a low-salt diet is difficult to maintain.
It has been demonstrated that making use of umami allows salt content to be reduced without compromising palatability. In an experiment comparing egg-drop soup prepared according to a standard recipe with a soup made with extra umami, it was found that salt could be reduced in the umami-boosted soup by around 30 percent with no loss of palatability. In a similar manner, some Japanese restaurants are experimenting with serving healthy kaiseki food able to be savored equally by those on a salt-reduced diet, by focusing on boosting umami in food preparation.

Incorporating umami skillfully into our daily diet allows us to enjoy tasty meals, even with less salt.

**Improving quality of life for the elderly**

Umami is mouthwatering, literally. Recent advances in taste physiology confirm that the umami substance glutamate promotes salivation. Salivation is further encouraged by the addition of inosinate.

Taste impairment among older people is deemed primarily due to a decline in salivation, and with some reports suggesting that such impaired taste sense can be ameliorated using umami to promote salivation, moves are underway to use umami as a means of improving quality of life for the elderly. In the UK, for example, chefs and scientists are working together to develop umami-rich meals for this purpose.

---

**Umami foods for delicious, low-fat French cuisine**

By reducing cream and butter content, boosting the bouillon component and using umami-rich ingredients, this potage is made with only one-third the calories of a more conventional recipe. Enhancing umami allows more intense flavor with fewer calories.

Courtesy of: Koji Shimomura (Tokyo, Edition Koji Shimomura)

---

**Healthy kaiseki cooking using the umami of dashi**

Kaiseki restaurants can serve equally enjoyable low-calorie or salt-reduced diets, by using umami of dashi. One example is preparing simmered dishes with more umami-rich dashi. This can be achieved by increasing the quantities of dashi ingredients.

Courtesy of: Takashi Tamura (Tokyo, Tsukiji Tamura)
Chefs and researchers give their views on umami

Michael Anthony
Chef, Gramercy Tavern (USA)
Umami is a way to make dishes compelling yet keep them restrained. Discovering umami gives us a chance to create dishes that are irresistible even with just a few ingredients, because it brings the natural deliciousness of those ingredients to the fore.

Gary Beauchamp
Distinguished Member Emeritus Director and President, Monell Chemical Senses Center (USA)
Human breast milk is rich in umami. The high glutamate content of breast milk is the same for all humans, regardless of race.

From a young age, we have all been exposed to umami, and honed our taste for it. Even if we are unaware of it, umami is a taste familiar to us all from birth.

Heston Blumenthal
Owner chef The Fat Duck (UK)
I deliberately and intentionally created a dish that I called “umami broth” (2001) which was absolutely full of many umami tastes. I included a lot of different umami ingredients such as kombu, soy sauce, white saury, dried shiitake mushrooms, lightly poached mackerel and of course tomatoes, amongst other things.

Mauro Colagreco
Owner chef, Mirazur (France)
I don’t think that umami is something uniquely Japanese that Japan has transmitted to the rest of the world. It’s true that perhaps the West was not conscious of the umami taste, but I think that now recognition for umami is widening, and it’s being used in cuisine to a great extent.

Regis Cursan
Pastry chef Nobu London (UK)
The first time I ate tamarillo I could feel something was different from other fruits. I later realized that thing was umami. Maybe I was the first one to discover umami in the tamarillo! Out of that discovery came the idea for a new dessert.

Heston Blumenthal
Owner chef The Fat Duck (UK)
I deliberately and intentionally created a dish that I called “umami broth” (2001) which was absolutely full of many umami tastes. I included a lot of different umami ingredients such as kombu, soy sauce, white saury, dried shiitake mushrooms, lightly poached mackerel and of course tomatoes, amongst other things.

Mauro Colagreco
Owner chef, Mirazur (France)
I don’t think that umami is something uniquely Japanese that Japan has transmitted to the rest of the world. It’s true that perhaps the West was not conscious of the umami taste, but I think that now recognition for umami is widening, and it’s being used in cuisine to a great extent.

Thomas Keller
Owner chef, The French Laundry (USA)
Even in classic French cuisine, you have components that today are recognized to be full of umami. For example, the rataouille that I cooked was based on a classic recipe. Trying to describe umami is almost impossible. We just have to accept it, and say it is there. It is part of what we feel, part of what we taste and part of, most importantly, what we enjoy about food.

Regis Cursan
Pastry chef Nobu London (UK)
The first time I ate tamarillo I could feel something was different from other fruits. I later realized that thing was umami. Maybe I was the first one to discover umami in the tamarillo! Out of that discovery came the idea for a new dessert.

Mauro Colagreco
Owner chef, Mirazur (France)
I don’t think that umami is something uniquely Japanese that Japan has transmitted to the rest of the world. It’s true that perhaps the West was not conscious of the umami taste, but I think that now recognition for umami is widening, and it’s being used in cuisine to a great extent.

Thomas Keller
Owner chef, The French Laundry (USA)
Even in classic French cuisine, you have components that today are recognized to be full of umami. For example, the rataouille that I cooked was based on a classic recipe. Trying to describe umami is almost impossible. We just have to accept it, and say it is there. It is part of what we feel, part of what we taste and part of, most importantly, what we enjoy about food.

Kent Kurihara
Professor emeritus, Hokkaido University (Japan)
Umami is found universally in foods around the world, rounding other tastes to offer a smoother, more subtle flavor experience. Using foods particularly high in umami results in dishes with mellow taste.

Kiyomi Mikuni
Owner chef Hotel de Mikuni (Japan)
French restaurants the world over now acknowledge the benefits of umami, for example by making stock from the likes of kombu and katsuobushi. French cuisine is my specialty, but I’m also from Hokkaido, which is renowned for its kombu. My cooking takes a French base and adds umami, the fifth taste, discovered in Japan, to create original “Mikuni” dishes.
Takashi Tamura
Third-generation owner, Tsukiji Tamura (Japan)
I believe we Japanese have the instinctive ability at cellular level to detect umami. Accustomed from a young age to food made with dashi, we naturally learn to sense subtle, delicate umami flavors wherever they may be. You could say that umami is in our DNA.

Takashi Tamura
Third-generation owner, Tsukiji Tamura (Japan)
I believe we Japanese have the instinctive ability at cellular level to detect umami. Accustomed from a young age to food made with dashi, we naturally learn to sense subtle, delicate umami flavors wherever they may be. You could say that umami is in our DNA.

Yuji Wakiya
Owner chef, Wakiya Ichiemi-charo (Japan)
The stronger the flavor of the ingredients, the greater the need for the dashi to have umami to match: without it, the taste will be unbalanced. Conversely, if the balance is right, the tastes of the ingredients really stand out. This is what we mean by making the most of the ingredients. Dishes with umami linger on the palate pleasantly, and make a powerful impression; these are striking dishes that reassure and warm us.

Pedro Miguel Schiaffino
Owner chef, Malabar (Peru)
Umami creates deep taste and harmony. By combining umami ingredients, I can come up with dishes that are balanced and full of rich flavor. There are a lot of Peruvian ingredients rich in umami, and I love using them in the food at my restaurant.

Keiko Nagae
Pastry chef (France)
While each ingredient here has its own distinct character, none dominates: thus balance is maintained. Tastes change as you eat, with umami lingering afterwards. Desserts that feature all five basic tastes are satisfying because umami compensates for any reduction in sugar.

Koji Shimomura
Owner chef, Edition Koji Shimomura (Japan)
Umami allows you to create dishes flavorful yet light. It also strikes me that umami can be used to keep food appetizing in environments where impact on sense of taste is a concern, such as inflight meals. I imagine that from here on, chefs will need to learn increasingly more about umami and how to make the most of it.

John Prescott
Food consultant (Australia)
Most of our dishes use tomatoes, stock, and vegetables that are sources of umami. I think that Western consumers have been very familiar with umami quality, but have used the term ‘savory’, which most likely reflects not only the taste component (umami) but also the odour/flavour component. It hasn’t been clear to most people that there is a distinct taste like sweetness that is umami.

Yasuhiro Sasajima
Owner chef Il Ghiottone (Japan)
Italian cooking has no dashi concept, but does make generous use of umami foods such as tomatoes, cheese, cured ham and porcini. An opportunity to grapple with Buddhist vegetarian cooking for an Italian recipe book using Kyoto vegetables gave me a new appreciation of the influence of umami and kombu dashi, and transformed my view of cooking.

Ole G. Mouritsen
Professor, University of Southern Denmark and Nordic Food Lab (Denmark)
In Nordic countries, we have utilized umami in traditional cooking more or less unconsciously. In recent years, umami has become a well-known concept and is used to enhance and describe deliciousness in e.g., cheeses and fermented products. Most recently Nordic seaweeds have been proposed for preparing dashi.
umami may have been discovered in Japan, but chefs around the
world who have noted the impact of umami are now actively incor-
porating it in their cooking. Umami is international, and with its
ability to draw the maximum flavor from ingredients, will continue to open
new doors in all cuisines.

David Kinch, Manresa (USA)
Umami is an important factor in all of my
dishes, for the balance of flavors and syner-
gistic effects. I’m trying to reduce the fat in
what is served at the restaurant, and umami
not only makes for healthier food, but makes
dishes delicious and satisfying.

Rye Brioche with Seaweed,
Grilled Sardines, Soy Sauce, Spinach,
and Roquefort Cheese
The sardines are basted with soy sauce during grilling and
served with brioche made from dough containing uma-
mí-rich nori, in a flavorful dish that combines the ocean’s
bounty of fish and seaweed with the mountain’s blessing of
Roquefort cheese. Sea lettuce, dulse (a red algae) or sim-
ilar seaweeds can be substituted for the nori with just as
delectable results.

Alexandre Bourdas, SaQuaNa (France)
If I were to define umami, I would call it a
comfortable taste. So I use it to give diners
greater pleasure from their food. I want to
keep making dishes that tap the power of
umami in original ways, ranging freely beyond
the bounds of convention and genre.

Love Apple Farms Tomatoes
with Parmesan
Parmesan cheese and tomatoes are two of the lead-
ing umami foods in western cooking, the rind of ripened
cheese being particularly rich in umami. Here an extract
was made from this cheese rind and Rishiri kombu, and
combined with vegetable stock in a sauce that serves up
an intense umami hit for the palate.

Rye Brioche with Seaweed,
Grilled Sardines, Soy Sauce, Spinach,
and Roquefort Cheese
The sardines are basted with soy sauce during grilling and
served with brioche made from dough containing uma-
mí-rich nori, in a flavorful dish that combines the ocean’s
bounty of fish and seaweed with the mountain’s blessing of
Roquefort cheese. Sea lettuce, dulse (a red algae) or sim-
ilar seaweeds can be substituted for the nori with just as
delectable results.

See UMAMI: The Fifth Taste for recipes.
About the Umami Information Center

History
The Umami Information Center (UIC) was established in 1982 with assistance from the Umami Manufacturers Association of Japan to facilitate the global dissemination of information on umami. In order to maintain its neutral position, and ensure transparency and openness, in April 2007 the UIC was officially accredited and recognized as a Non-Profit Organization by the Tokyo Metropolitan Governor’s Office.

Activities
The UIC is dedicated to supplying accurate and beneficial information concerning umami via umami education programs and activities across the globe, in order to further understanding of umami, and encourage healthy dietary habits.

1. Symposiums
The UIC runs symposiums and lectures on umami in conjunction with academic societies, cooking schools and other groups and institutions both in Japan and elsewhere. The aim is to promote accurate understanding of umami by providing basic information and helping people to experience umami for themselves.

2. Websites
Two websites—English and Japanese—supply the latest news on umami and UIC activities to a global audience.
English: www.umamiinfo.com
Japanese: www.umamiinfo.jp

3. Publications
Information is provided through leaflets offering a basic guide to umami, umami-themed cookbooks, and videos featuring umami foods.

Major publications
UMAMI: The Fifth Taste
A comprehensive guide to umami and dashi including recipes from top international chefs, plus sections on the history and science of umami.

UMAMI the World
A handy, accessible guide to umami history and umami foods, available in six languages: Japanese, English, French, Spanish, Portuguese and German.

UMAMI World Recipes
Mini recipe books (in English) featuring umami recipes from Japan, Thailand, Vietnam, and the Philippines.

Sweet, Sour, Salty, Bitter and UMAMI
Booklet on umami with a scientific focus (English)

Sekai ni hirogaru umami no miryoku—Umami goes global
(Japanese)
Kenzo Kurihara, Professor emeritus, D.Sc Hokkaido University
Booklet covering umami research and scientific information from the discovery of umami to the present day, by Japan’s leading taste researcher

DVDs
Food education Umami-tte naani? (Japanese)
Umami wo shiru—What is umami? (Japanese/English)